
Branching Messaging for Anonymous
Communication

Isaac Sheff
SURF

Undergraduate Majoring in Computer Science
California Institute of Technology

isheff@caltech.edu

Tracey Ho
Mentor

Assistant Professor of Electrical Engineering and Computer Science
California Institute of Technology

tho@caltech.edu

Abstract—We consider anonymous communication between
pairs of nodes in the presence of an adversary who can observe
all network traffic. Existing schemes involve partially trusted
central servers, a large amount of cover traffic, or high latency.
We propose a scheme which improves upon the trade-off, in
which messages require only logarithmic time to deliver, as well
as computational time to send. In this scheme, any node receiving
a message applies a private decryption key to discover content,
or instructions to forward the message to zero or more other
nodes. Furthermore, when a node applies its decryption key
to a message not encrypted with that node’s encryption key,
the result is indistinguishable from a message with forwarding
instructions. A sender wraps a message in an onion route of
logarithmic length, branching (forwarding to multiple nodes) at
random points, resulting in a tree of forwarded messages. Nodes
wait to initiate messages of their own until they have received
a message, so it is indistinguishable whether they are sending
or forwarding. Through analysis and simulation, we show this
system preserves a high degree of sender and receiver anonymity,
as well as unlinkability between communicating pairs.

I. INTRODUCTION

Encryption has made great strides in hiding the contents of
transmitted data. Encryption alone, however, cannot conceal
all information from unwanted third parties. Most notably,
encryption alone cannot hide the identity of communicating
parties. Beyond merely encrypted communication, anonymous
communication discloses neither the creator of message con-
tent nor its recipient.

Intuitively, the idea behind Branching Messaging is that if
a set of nodes are communicating on a fairly well connected
network (most nodes can communicate with most other nodes),
one node can hide the recipient of a message by sending
it along a multi-stop route to its destination (several other
nodes forward the message on its way). What distinguishes
Branching Messaging from other systems is that each node that
receives a message may send several, including forwarding
the message’s content. Due to the encryption and message
structure used, nodes themselves are usually not aware of
which, if any, of the messages they’re sending are forwarded
content or mere cover traffic. An observer, even one with
access to all traffic on the network, could try to keep track
of all possible recipients of a message, but as time goes on,
that set grows in size exponentially. Nodes can hide when
and if they are themselves sending content by sending it as a

new message only when they’ve just received a message. If
all traffic is encrypted, an observer cannot tell which, if any
of the messages sent contains new content.

A. Previous Work

In principle, Branching Messaging builds upon Chaum’s
1981 idea of onion-routing with mixes [1]. A mix is a node
with a public encryption key and a private decryption key.
Other nodes can encrypt a message and a forwarding address
to a mix, and the mix would decrypt them, and send the
message on its way. If the forwarding address is another mix,
and the message itself is an encrypted message-address pair, a
chain of forwarding procedures is produced, called an onion-
route. Each mix knows only where it received the message
from, and where it sent it to, but not the original sender or
eventual recipient. Unfortunately, for an attacker which sees all
traffic on the network, the full route of the content sent can be
traced. To avoid this, protocols such as Rackoff and Simon’s
“Rapid Mixing” rely one mixes receiving multiple messages
before sending, so which message has which origin cannot be
traced [2]. These fundamentally rely on high traffic density
(messages sent per node per unit time) relative to latency to
function.

Beimel and Dolev’s “Busses” solution, on the other hand,
has no reliance on any kind of statistical traffic assumptions
to preserve anonymity [3]. Instead, all traffic is onion-routed
along pre-determined routes, which require a capacity suffi-
cient to hold all messages likely to be sent at any time, and
the ability for all traffic to reach all destinations via some
combination of routes. The most reliable such solution requires
O
(
n2

)
information (enough for a message from each node

to each other node) to be transmitted each time step, and to
pass over n time steps to each of the n nodes. Compromise
solutions feature more linear computational complexity, and
O (n) latency between message sending and receipt.

Kannan, Ray, and Iyengar provide a solution of similarly
linear computational complexity and latency using Random-
ized Message Forwarding [4].

Other solutions, such as Chaum’s Dining Cryptographers
Problem, rely on multi-party communication and evaluation
to hide senders and receivers [5]. These methods may work

well in systems with multicasting or broadcast, but less so on
node-to-node networks.

B. Our Contribution
To explore the middle ground between statistically secure

protocols involving high-traffic mixing, and absolutely secure,
if slow protocols such as Randomized Message Forwarding
and Busses, we propose the idea of Branching Messaging. The
fundamental idea is that a message may contain instructions to
forward its contents not only to one, but to multiple recipients.
This builds upon the idea of a mix creating an onion route
to create a route that branches, an encrypted tree. Multiple
messages forwarded by the same node in a time step add
to the anonymity (one cannot tell which forwarded message
was which), as do the messages themselves, branching out
to multiple destinations. In principle, the idea of branching
messaging is very broad, and can include constructs similar
to pre-structured multicast trees, but in order to keep message
overhead and computational complexity low, it is easiest to
create messages that “branch out” at random. The result is
a system which can provide logarithmic (in the number of
nodes) latency and computational complexity (for each node),
as well as low traffic density (logarithmic in the number of
nodes).

II. THE SYSTEM

A. The Graph
Communication takes place between the n nodes on a

graph. The nodes are fairly well connected, which is to say
most nodes are capable of communicating with most other
nodes. For the statistics presented hereafter, the graph shall be
assumed to be well-connected, but this is not strictly necessary
for the protocol presented to function.

B. Time
All nodes can measure time the same way. As part of the

communication protocol, nodes agree on the length of a time
step.

C. Desire to Communicate
Each time step, each node has a probability f of generating

a piece of content meant for another node (chosen in effect at
random).

Nodes want this content to reach the node for which it
is meant in as few time steps as possible, but will not do
anything to compromise their anonymity. No network observer
or intermediary node should be able to tell if and when content
is first sent, or who receives it.

Furthermore, nodes do not want to send more traffic, or
perform more computation, than necessary. They desire to
minimize the use of these resources.

D. Messages
When nodes transmit data to other nodes the transmission

is called a message. For simplicity, nodes agree on a standard
size for all messages that is large enough to encapsulate any
content and small enough to be transmitted in one time step
between any pair of nodes that can communicate.

E. Identification, Encryption and Transmission

Assume all nodes to have unique and succinct (O (log n))
identifiers, known to all other nodes.

Much like Beimel and Dolev’s requirements for semantic
security in “Busses,” nodes have semantic security [3]. This
means that all nodes know the public encryption keys of all
other nodes, and each node keeps secret its corresponding
private decryption key. If two distinct messages are encrypted
with a public key, no node but the one possessing the cor-
responding private key can tell which encrypted message has
which plaintext in polynomial time (in the number of nodes).
Note that this means that if a message is encrypted with one
node’s encryption key, and then another node’s decryption key
is applied, the results are effectively random, as they cannot
be predicted in polynomial time without knowing the original
message and both keys.

All channels of communication, which is to say all infor-
mation transmitted from one node to another, are assumed
to be encrypted. If a node sends the same message to two
different destinations, because each is being sent over a chan-
nel encrypted with a different key, the resulting transmissions
will be indistinguishable to an observer from the case of two
entirely different messages being transmitted.

III. THREATS TO ANONYMITY

A. Terminology

Using Pfitzmann and Hansen’s terminology [6] , an attacker
is an entity seeking to learn or interfere with the nature of
communication in a system. The attacker may perceive a
number of things:

• Given a message, a sender set is the set of nodes
from whence the message could have originated, and the
recipient set is the set of nodes for which the message
content, if it has any, could be destined.

• Unlinkability is the quality of a set of items (such
as nodes and messages) indicating no change in their
relationship after the attacker has made an observation
than before.

• Sender anonymity is the property of a communication
system in which the attacker (which is granted some set
of powers determined by the system) is finds messages
and the nodes that sent them to be unlinkable.

• Recipient anonymity is the property of a communication
system in which the attacker (which is granted some set
of powers determined by the system) is finds messages
and the nodes that receive their content to be unlinkable.

• Relationship anonymity means that the sender and recip-
ient of a piece of content are unlinkable.

B. Attackers

An attacker is an entity including 0 or more nodes which
seeks any of the following:

• observe: The attacker wishes to know who is sending
content at any given time (or for any given message),

who is receiving, and the relationships between the two
(which nodes are “talking” to which).

• eavesdrop: The attacker wishes to know the content being
generated and/or received by nodes outside the attacker.

• interrupt: The attacker wishes to prevent communication
between some pair of nodes outside the attacker.

• forge: The attacker wishes to convey content, appearing
to be a node not included in the attacker (this is easily
prevented by digital signatures), or in violation of some
kind of rules or restrictions.

Attackers are defined by the set of nodes they contain
(including those nodes’ positions on the graph), as well as the
following characteristics (any given attacker has some subset):

• passive: The attacker obeys all rules of the system as
far as interaction with other elements of the system
are concerned, but may, for example, share information
outside of the system.

• active: The attacker may break rules of the system, such
as failing to forward messages the system declares ought
to be forwarded. An attacker may not be both passive and
active.

• traffic-aware: The attacker is aware of all the traffic on the
graph, not just the traffic of the nodes it contains. “Aware”
here means that the attacker knows the information sent
along each edge.

Attackers are assumed to have the ability to compute
polynomial time operations (in the number of nodes).

The primary point of interest for this system is defense
against passive, traffic-aware attackers. These may posses a
small number of nodes (a large number of nodes is extremely
hard to hide from, as they can develop a near-complete picture
of the traffic on the graph, and how it’s routed), and as passive
attackers, can at most observe and eavesdrop. This is a similar
situation to that explored by Beimel and Dolev’s “Busses” [3].

IV. METHODS

The basic idea behind this protocol is to send onion-
routed messages through the graph, with probabilistic message
branching at each node, so that very quickly, a message’s
recipient set can grow very large (exponentially, even). This
is accomplished with headers written such that, if a message
received is random (which is the same as if it were encoded
for a different node than the one that’s just received it), then
that message will be forwarded at random with desirable
probabilistic branching. In this way, it is possible for cover
traffic to be produced without nodes even knowing they’re
producing or forwarding it.

It is important to note that due to semantic encryption,
nodes receiving a random message cannot distinguish it from
a message that may contain encrypted or onion routed content.
They will then follow any forwarding instructions in this
message, producing “cover traffic,” which is to say traffic with-
out content, with desirable probabilistic properties, without
knowing that they are not distributing content.

Additionally, upon receipt of a message, and while for-
warding that message to its destinations, a node can initiate a

message of its own. It will do this if it has content to send,
or at random. The random message initiation serves both to
keep the growth rate of traffic under control, and to protect
against the situation in which an attacker has sent a message,
and knows how many “forwardings” it has, and is watching
for message initiation.

Message sending, encryption and decryption are assumed to
all occur all within a time step. As such, this protocol takes
place in rounds, each of which is composed of nodes receiving
messages, decrypting them, reading the headers and deciding
what to do with them, and then sending along any forwarded
messages, as well as any new messages of their own.

It is important to note that nodes only send messages in
rounds when they’ve received messages. To an attacker, this
makes it impossible to distinguish if a node is a sender or
simply a forwarder.

Communication begins when one node sends out a message,
which either because of planning or because of probabilistic
forwarding, is forwarded on to many other nodes, providing
the opportunity for messages to be sent.

In full, upon receipt of a message m, a node x executes the
following procedure:

1) The node applies its private decryption key to the
message.

2) The forwarding addresses of the message are deter-
mined. A forwarding address, here, is simply an identi-
fier of a node that this message should be forwarded
to. Let the probability distribution of the number of
forwarding addresses per message, if the messages are
purely random bits, be called b. b is simply the distri-
bution of the number of other nodes a received message
is forwarded to. It is independent of the path length of
messages. Ideally, b should be some distribution that’s
fairly low, so the number of messages doesn’t grow out
of control (|b| < 1), but it should not make any number
of messages suspiciously unlikely, so that it is never the
case that a node adding its own message to a set of
forwarded messages produces an unlikely number. An
exponential decay should do.
There are a number of ways to set b. For example, b
could be some function known to all nodes that takes as
input some set number of bits, and provided those are
random returns answers with the desired distribution.
The first set number of bits of the decrypted message
would then serve as inputs to determine the number of
forwarding addresses, a. The addresses themselves could
simply be the first a sets of bits long enough to code for
an address, after the bits used for b. Addresses should
be uniformly distributed over all nodes with which
this node can communicate, so the process of turning
these sets of bits into addresses necessitates an even
distribution function, again some standard conversion
known to all nodes.

3) The message body is forwarded. The node sends the
body of the message (not including bits used to calcu-
late the forwarding addresses) on to all the forwarding

addresses. It is assumed that forwarding addresses are
small, and random padding can be used to maintain
uniform message size across several such forwardings.

4) If the node has generated content since last it received
a message, it onion wraps this content. That is to say
that it affixes to the message a header featuring a
random number of forwarding addresses, including the
destination address, and encrypts it with the public key
of a node that can communicate with the destination.
This node is the destination of the encrypted message,
which itself must have a header affixed, and so on, for
some number of layers that define the route. Though
route lengths can be random, they should have some
average length `, used to determine statistics about the
system. The outermost layer should be encrypted to
some node with which this node can communicate, and
sent to that node.
This process creates a content-containing route which
is prescribed, and at each node along this route, the
message body is forwarded to at least one other node,
the node one ahead on the route, as well as zero or
more other nodes, which will receive effectively random
messages, since the body was not encrypted with those
nodes’ public keys.
The number of forwarding addresses in the header of a
message that is part of a content-containing route must
be at least one, and as such that distribution cannot
be b. Let the distribution of the number of forwarding
addresses in the header of a message containing content
be bf .

5) Furthermore, a node that has received 1 or more mes-
sages this round must choose a number from the proba-
bility distribution p to be the number of additional “cover
messages” to initiate. These are messages with random
content sent to random nodes with which this node can
communicate. Obviously, nodes would prefer not to have
to send excess traffic, so p should be kept low, but it is
necessary to regulate the amount of traffic in the system,
as well as provide plausible deniability in the case that
all messages received by the node this round were sent
by attacker nodes, and they’re counting the number of
forwaridngs they asked for and the number of messages
sent out. As nodes can control the headers of “cover
messages,” let the statistical distribution of number of
forwarding addresses in the header of a cover message
be bp.

A. Optimization

The challenge in constructing a randomized branching
messaging system is in preserving short latency and high
anonymity while minimizing the number of messages nodes
must forward each round. Furthermore, since it is an expo-
nentially branching system, care must be taken to see that
the number of messages does not grow out of control, nor
diminish entirely. If nodes should altogether stop sending
messages, none will be able to start, since nodes only send

Traffic Density vs. Probabilistic Sending

0.2 0.4 0.6 0.8 1.0

0.20

0.25

0.30

0.35

0.40

0.45

Traffic Density
(messages per node per round)

M
e
a
n
 P

ro
b
a
b
ilistic S

e
n
d
in

g
(m

e
ssa

g
e
s p

e
r n

o
d
e
 p

e
r ro

u
n
d
)

Fig. 1. With f = 0.001 and b = 0.703506 (see (2))

if they’ve received. (For practical applications, there might
be some contingency, or small probability of spontaneous
message sending.)

The parameters are:
n : number of nodes on the graph
f : frequency (content per node per time step)
` : length of an average onion route
p : cover messages per node that’s received this round
b : forwarding addresses per random message
bf : forwarding addresses per content message
bp : forwarding addresses per cover message

Define traffic density d to be the mean number of messages
per node in a given round.

To begin with, b has to be less than 1, and the number of
messages shouldn’t be set to grow out of control if p ≤ 0.

Given that there exists traffic density d, and message desti-
nations are random and evenly distributed, each target (node)
has a poisson distribution of messages sent to it, so each
target’s probability of receiving no messages in a given round
is e−d.

Therefore, each node’s probability of having the opportunity
to send messages in a given round is 1 − e−d, and so each
node will want to send an average of f

1−e−d content-containing
messages when it has the opportunity.

Furthermore, a node that has received a message receives
an average of d

1−e−d messages, and so will be obligated to
forward bd

1−e−d messages.
In addition, a node that has received a message will want to

send out probabilistic traffic to maintain some desired traffic
density, so it sends p more messages.

The number of messages sent by a node that has received
messages should equal, on average, the number of messages a
node that has received at least one message has received. That
is to say, the system is in equilibrium when:

d

1− e−d
= p+

db+ f

1− e−d
(1)

p =
(1− b) d− f

1− e−d
(2)

Note that p is increasing as a function of d for reasonable
values of f and b. That’s good, because it means that nodes
can keep a constant p to maintain a level of traffic.

Nodes onion route a message some distance `, and that dis-
tance is determined by the number of nodes the traffic reaches
at that distance. With each successive round, a message is
forwarded by another node. When this happens, the node also
may forward several other messages, which, to an observer,
are all equally likely to be the continuation of the message
received. Therefore the number of possible recipients after one
round is expressed in (1), and the number of possible recipients
after two is that number squared, and so on. The number of
possible recipients after n rounds is the expression from (1)
to the nth power, and so to get a recipient set of order size n,
the path length should be:

` =
ln (n)

ln
(

d
1−e−d

) (3)

1) The Talkative and the Paranoid Should be Indistinguish-
able: In order to set these parameters, however, the nodes
must choose some optimal level of traffic density. Consider
that nodes creating messages with content (all messages they
put in the onion route, not just the first one) don’t produce
messages with a distribution of forwarding instructions b. That
is to say, all messages in the onion route will say “forward
me at least once,” but random messages forward a number of
times taken from the distribution b, which must be less than
1. Content-full messages instead have a number of forwarding
instructions with statistical distribution bf .

By analyzing the network traffic, and any messages sent
to its nodes, an attacker could determine the distribution of
number of forwarding addresses per message, which will vary
with the portion of the messages that are part of an onion route.
In order to cancel this out, and make the statistical distribution
of the number of forwarding addresses per message equal to
that of a set of random messages, bp must be less than b,
since bf is greater than b. Specifically, the mean of the two
distributions bp and bf , each weighted by the average number
of such messages generated by a node that’s active this round,
should be equal to b.

b=
pbp +

`fbf
1−e−d

p+ `f
1−e−d

(4)

b=

(
(1−b)d−f
1−e−d

)
bp +

`fbf
1−e−d(

(1−b)d−f
1−e−d

)
+ `f

1−e−d

(5)

b=
((b− 1) d+ f) bp ln

((
1 + 1

ed−1

)
d
)
− bff ln (n)

((b− 1) d+ f) ln
((

1 + 1
ed−1

)
d
)
− f ln (n)

(6)

Solving (6) for b, it is possible to numerically solve for
traffic density d. Thus, taking bf , and bp to be defining
parameters of the system, p can be varied to achieve minimum

Mean Branching Factor vs. Traffic Density

Fig. 2. Maintaining a constant receiver anonymity set size of 1000 with
varying b, bf = 1.2, f = 0.001, bp = 0 (cover traffic goes one round and
does not forward). p is set by (2), and ` by (3). Note that here we can
numerically optimize b.

Mean Branching Factor vs. Traffic Density with Various
Distributions

Mean Branching Factor

Tra
ffic D

e
n
sity

(A

v
e
ra

g
e
 N

u
m

b
e
r o

f M
e
ssa

g
e
s p

e
r R

o
u
n
d
 p

e
r N

o
d
e
)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

bf=1.3
bf=1.4

bf=1.2
bf=1.1

bf=1.0

Fig. 3. Maintaining a constant receiver anonymity set size of 1000 with
varying b, f = 0.001, bp = 0 (cover traffic goes one round and does not
forward), and bf = 1, 1.1, 1.2, 1.3, 1.4. p is set by (2), and ` by (3). Note
that here we can numerically optimize b, but optimizing for bf will lead you
to bf = 1, so your choice of bf must take other factors into account.

d. For an example, see figure 2. Unfortunately, d cannot be
solved for analytically.

2) Choosing f , n, bf , and bp: The defining parameters of
the system are thus, in effect, the frequency at which nodes
generate content f , the size of the recipient anonymity set
of a message n (this is generally assumed to be the number

Content Generation Frequency vs. Traffic Density
Necessary for Constant Receiver Anonymity Set Size

500 1000 1500 2000 2500 3000

0.025

0.05

0.075

0.1

Latency (units of universal time)

Po
rtio

n
 o

f Tra
ffic T

h
a
t is N

e
w

 C
o
n
te

n
t

Fig. 4. Maintaining a constant receiver anonymity set size of 1000 with
varying c, f = 0.001, bf = 1.2, bp = 0, b selected according to the
above optimization conditions (and boundary constraints, so there is only
one possible optimum b). This demonstrates the tradeoff using message
transmission delaying between latency and fc

d
, the portion of traffic that is

new content each round.

of nodes), the number of forwarding addresses in a content-
filled message bf , and the number in a cover message bp.
Note that as bf becomes as small as possible (approaches
1), messages become essentially onion routed only. The only
anonymity comes from long routes and traditional mixing
(cases when routes cross at the same node and the same
time). This is higher latency, but lower traffic density. (See
figure 3) Note also that bp contributes to the recipient set of
a message directly, so while it may seem like useless cover
traffic, boosting bp can also be helpful.

Consider that if b is extremely low, branching will come
primarily from probabilistic traffic. This is ok, and can even
lead to lower traffic density if the attacker possesses very
few nodes. However, lower b means a larger portion of the
tree is consciously constructed by nodes, and so the nodes
constructing it know what is and is not cover traffic. Attackers
with more nodes can be better thwarted with higher b.

3) Time Distortion: Inserting Delay to Artificially Boost
Frequency: When choosing the size of a time step, nodes can
send messages at some slower speed relative to the frequency
at which they generate content to in effect produce content at
some higher rate. This slower speed, of course, has a detrimen-
tal effect upon the message latency, which is proportionally
slowed, as well as the traffic density, which increases relative
to the slower speed of messaging, but decreases relative to
the rate of content generation. This changed density decreases
`, and so latency does not increase linearly. The net result is
that by slowing transmission speed linearly by some factor
c, content is in effect generated at a rate of fc relative to the
new transmission speed, and d must be calculated accordingly.
Latency becomes `c, and the useful parameter to compare it
to is fc

d , or the portion of the messages a node sends that are
new content. See figure 4.

Traffic Density vs. Receiver Anonymity Set Size

1000

100

10

0.04 0.08 0.12 0.16 0.2

Traffic Density
(Average Number of Messages per Round per Node)

S
ize

 o
f R

e
ce

iv
e
r A

n
o
n
y
m

ity
 S

e
t

Fig. 5. Varying `, the length of onion routes for content, with f =
0.001, bf = 1.2, bp = 0. In linear cases (such as an “n-seat bus,” or random
equalized in-out forwarding) traffic density is constant (usually 1). Note that
traffic density of 1 here is a receiver anonymity set size of 2.6×1083 nodes.

B. Some Numeric Examples

To help get an idea of what this amounts to, consider
some numeric examples of communication schemes. Again,
bp, bf , f, and n are all parameters of the system. `, b, and d
are all calculated.

bp bf f n ` b d
0 1.2 0.001 1000 76.0718 0.70351 0.18445
0.5 1.2 0.001 1000 45.9454 0.69936 0.30863
0 2 0.001 1000 49.0758 0.70001 0.28844
0 1.2 0.1 1000 7.74501 0.65630 2.1578
0 1.2 0.001 100000 59.1834 0.70168 0.2382

V. CONCLUSIONS

Branching messaging illustrates many of the trade-offs in
systems of anonymous communication. Increases in latency
can buy lighter use of resources, and increases in resource
use can buy larger anonymity sets, and thus larger networks.
Increasing content generation demands increased traffic den-
sity, but in many ways these trade-offs compare favorably with
existing systems.

Most traditional anonymity solutions, such as Rackoff and
Simon’s Rapid Mixing [2], Beimel and Dolev’s “Busses”
[3], and Kannan, Ray, and Iyengar’s Randomized Message
Forwarding [4] rely on relatively high traffic density to main-
tain anonymity. Mixing solutions can require as many as all
nodes each round to send messages, in order to preserve
anonymity for any number of messages. Busses necessitates
relatively few transmissions of data, but each transmission
carries O (n)−O

(
n2

)
data, amounting to an effectively linear

(or higher) amount of cover traffic in the number of nodes, the
same as Randomized Message Forwarding.

In contrast, the potential size of the receiver anonymity
set (which need be no larger than the number of nodes
communicating) in a branching system is at least exponential
in the traffic density (number of messages sent per node per
unit time). For relatively small levels of content-generation,

Content Generation Frequency vs. Traffic Density
Necessary for Constant Receiver Anonymity Set Size

0.005 0.010 0.015 0.020 0.025

0.25

0.5

0.75

1

Frequency of Content Generation (per node)

Tra
ffic D

e
n

sity

(M
e
a
n

 M
e
ssa

g
e
s p

e
r R

o
u

n
d

 Pe
r N

o
d

e
)

Branching

Linear

Fig. 6. Maintaining a constant receiver anonymity set size of 1000 with
varying f, bf = 1.2, bp = 0, b selected according to the above optimization
conditions (and boundary constraints, so there is only one possible optimum
b). Linear results represent the traffic density of linear cases (such as an “n-
seat bus,” or random equalized in-out forwarding).

the number of nodes that would necessitate the kind of
“every node sends a message each round” communication
in some other systems is astronomical. For example, with
f = 0.001, bf = 1.2, bp = 0, d = 1 would imply that there
are 2.6× 1083 nodes. See figure 5.

Furthermore, unlike protocols such as busses, in which
proportionally more rounds of busses are required to deliver
content at higher frequencies, the traffic density in a branching
system necessary to maintain higher levels of content creation
grow substantially sub-linearly. See figure 6.

Branching messaging exists between the extremes of non-
statistical hard anonymity of busses and randomized forward-
ing and the highly statistical high-traffic systems like rapid
mixing. It is tunably to adapt to a variety of desirable latencies,
sizes, and resource levels, and it is this very flexibility that
makes it worthy of study.

ACKNOWLEDGMENT

Professor Ho has been remarkably helpful in guiding me
through the research process, from project ideas to publication.
I cannot thank her enough.

REFERENCES

[1] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Commun. ACM, vol. 24, pp. 84–90, February 1981.
[Online]. Available: http://doi.acm.org/10.1145/358549.358563

[2] C. Rackoff and D. R. Simon, “Cryptographic defense against
traffic analysis,” in Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing, ser. STOC ’93. New
York, NY, USA: ACM, 1993, pp. 672–681. [Online]. Available:
http://doi.acm.org/10.1145/167088.167260

[3] Beimel and Dolev, “Buses for anonymous message delivery,” Journal
of Cryptology, vol. 16, pp. 25–39, 2008, 10.1007/s00145-002-0128-6.
[Online]. Available: http://dx.doi.org/10.1007/s00145-002-0128-6

[4] R. Kannan, L. Ray, and S. Iyengar, “Randomized message forwarding
with equalized incoming/outgoing traffic rate: A mechanism for ensur-
ing anonymous communication,” in Intelligent Sensing and Information
Processing, 2005. ICISIP 2005. Third International Conference on, dec.
2005, pp. 183 – 188.

[5] D. Chaum, “The dining cryptographers problem: Unconditional
sender and recipient untraceability,” Journal of Cryptology,
vol. 1, pp. 65–75, 1988, 10.1007/BF00206326. [Online]. Available:
http://dx.doi.org/10.1007/BF00206326

[6] A. Pfitzmann, T. Dresden, and M. Hansen, “Anonymity, unlinkability,
unobservability, pseudonymity, and identity management a consolidated
proposal for terminology,” Tech. Rep., 2005.

